中国科学院城市环境研究所副研究员,澳大利亚新南威尔士大学博士(制造工程及管理)和博士后(生命周期工程实验室),主要从事碳中和下关键金属等物质双循环模拟及风险管控技术研究,在Nature Communications、One Earth、Fundamental Research、Global Environment Change、Applied Energy、CIRP Annals-Manufacturing Technology (国际生产工程科学院院刊)及《资源科学》等国内外专业期刊发表论文四十多篇,得到中国科协青年托举人才计划、福建省高层次引进人才、中科院院级特别研究助理等人才项目支持,获得华人产业生态学会2020年度学术新人奖、澳大利亚新南威尔士大学Writing Fellow、RCR期刊2020年度最佳审稿人等奖项;主持或参与国家自然科学青年基金、国际合作基金、地区合作基金及德国大众可持续发展、北方稀土等工业咨询项目等十多项课题;担任Science of the Total Environment 编委,受邀成为 Resources Conservation and Recycling “关键资源和可持续发展”特刊编辑,作为单位代表发起成立世界稀土产业协会(REIA),担任联合国环境规划署(UNEP)国际项目立项战略研讨委员会成员、国际关键金属圆桌论坛(IRTC)指导委员会委员,研究成果为提升城市新兴矿产循环能力、国家关键物质供应安全及全球环境可持续发展提供重要科学支撑,并被IPCC报告重点引用和评述。

个人主页:https://pengwang.netlify.app/

E-mail: pwang@iue.ac.cn‌

论文成果‌

  1. Wang, P.; Ryberg, M.; Yang, Y.; Feng, K.-S.; Kara, S.; Hauschild, M. and Chen, W.-Q.* Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts. Nature Communications. 2021, 12, 2066.
  2. Wang P, Wang H, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus. Fundamental Research, 2022.
  3. 汪鹏, 王翘楚, 韩茹茹, 汤林彬, 刘昱, 蔡文佳, 陈伟强*. 全球关键金属-低碳能源关联研究综述及其启示. 资源科学, 2021, 43 (4): 669-681.
  4. Wang, P.; Chen, L.-Y.; Ge, J.-P.; Cai, W.; and Chen, W.-Q.* Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition. Applied Energy. 2019, 253: 113612.
  5. Wang P, Zhao S, Dai T, et al. Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis. Renewable and Sustainable Energy Reviews, 2022, 161: 112367.
  6. Li F Q, Wang P*, Chen W, et al. Exploring Recycling Potential of Rare, Scarce, and Scattered Metals: Present Status and Future Directions. Sustainable Production and Consumption, 2022.
  7. Zhang T, Zhang P, Peng K, … Wang P* et al. Allocating environmental costs of China's rare earth production to global consumption. Science of The Total Environment, 2022: 154934.
  8. Sun Y, Liu S, Wang P*, et al. China's roadmap to plastic waste management and associated economic costs. Journal of Environmental Management, 2022, 309: 114686.
  9. Lin L, Feng K, Wan Z, Wang P, et al. Unexpected side effects of the EU Ship Recycling Regulation call for global cooperation on greening the shipbreaking industry. Environmental Research Letters, 2022, 17(4): 044024.
  10. Kong X, Feng K, Wang P*, et al. Steel stocks and flows of global merchant fleets as material base of international trade from 1980 to 2050. Global Environmental Change, 2022, 73: 102493.
  11. Wang, P.; Kara, S.*; Hauschild, M. Role of manufacturing towards achieving circular economy: The steel case. CIRP Annals,2018, 67 (1):21-24.
  12. Wang, P.; Li, W.; Kara, S. * Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages. Journal of Cleaner Production2018, 174:1492-1502
  13. Wang C., Feng K., Liu X.*, Wang P*, Chen W-Q, Li J.*. Looming challenge of photovoltaic waste under China’s solar ambition: A spatial-temporal assessment. Applied Energy .2021.
  14. Ding, Y.; Geng, X.-Y.*; Wang, P.* and Chen, W.-Q. How material stocks sustain economic growth: Evidence from provincial steel use in China. Resources, Conservation and Recycling. 2021, 171, 105635.
  15. Shen, J., Zhang, Q. *, Xu, L., Tian, S., & Wang, P. * (2021). Future CO2 emission trends and radical decarbonization path of iron and steel industry in China. Journal of Cleaner Production,129354.
  16. Ma, Z.-J.; Yang, Y.; Chen, W.-Q.*; Wang, P.; Wang, C.; Zhang, C. and Gan, J.-B. Material Flow Patterns of the Global Waste Paper Trade and Potential Impacts of China’s Import Ban. Environmental Science & Technology. 2021, 55 (13), 8492-8501.
  17. Ren, K., Tang, X*, Wang, P., Willerström, J., Höök, M.. Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050. Energy, 2021: 227, 120524.
  18. Ma, Z., Yang, Y., Chen, W. Q.*, Wang, P., Wang, C., Zhang, C., & Gan, J. Material Flow Patterns of the Global Waste Paper Trade and Potential Impacts of China’s Import Ban. Environmental Science & Technology 2021: 13, 8492–8501
  19. Wang, P., Li, N., Li, J., & Chen, W. Q. *. Metal-energy nexus in the global energy transition calls for cooperative actions. In The Material Basis of Energy Transitions, Academic Press. 2020: 27-47.
  20. Li J., Peng K., Wang P., Zhang N.*, Feng K. *, Guan D. *, Meng J., Wei W., and Yang Q. Critical rare-earth elements mismatch global wind-power ambitions. One Earth 2020, 3(1): 116-125.
  21. Wang, Q.-C.; Wang, P.; Qiu, Yang.; Dai, T; and Chen, W.-Q.* Byproduct Surplus: Lighting the Depreciative Europium in China’s Rare Earth Boom. Environmental Science & Technology.2020, 276: 124221.
  22. Wang, L.; Wang, P.*; Chen, W.-Q.; Wang, Q.-Q.; and Lu, H.-S. *Environmental impacts of scandium oxide production from rare earths tailings of Bayan Obo Mine. Journal of Cleaner Production.2020, 271: 111035.
  23. Tang, L.-B.; Wang, P.*; Graedel, T.E.; Pauliuk, S.; Xiang, K.-Y.; Ren, Y.*; and Chen, W.-Q. Refining the understanding of China's tungsten dominance with dynamic material cycle analysis. Resources, Conservation and Recycling. 2020, 158: 104829.
  24. Ma, Z.-J.; Ryberg, M.-W.; Wang, P.; Tang, L.-B.; and Chen, W.-Q.* China’s Import of Waste PET Bottles Benefited Global Plastic Circularity and Environmental Performance. ACS Sustainable Chemistry & Engineering. 2020, 8 (45): 16861-16868.
  25. Wang P., Cui X, Li J, Li W, Cai W, and Chen W-Q. Metal-Energy-Environment Nexus in Global Climate Scenarios Under 1.5 C Target. EnerarXiv-preprint (2020).
  26. Song, L.-L.; Wang, P.; Xiang, K.-Y.; and Chen, W.-Q.* Regional disparities in decoupling economic growth and steel stocks: Forty years of provincial evidence in China. Journal of Environmental Management.2020, 271: 111035.
  27. Song, L.-L.; Wang, P.*; Hao, M.; Dai, M.; Xiang, K.-Y.; Li, N.; and Chen, W.-Q.* Mapping provincial steel stocks and flows in China: 1978-2050. Journal of Cleaner Production. 2020, 262: 121393.
  28. Hao, M.; Wang, P*; Song L.-L.; Dai, M.; Ren, Y; and Chen, W.-Q.* Spatial distribution of copper in-use stocks and flows in China: 1978–2016. Journal of Cleaner Production.2020, 261: 121260.
  29. Yang, Y.; Liu, B.; Wang, P.; Chen, W.-Q.*; and Smith, T.-M. Toward Sustainable Climate Change Adaptation. Journal of Industrial Ecology.2020, 24 (2): 318-330.
  30. Dai, M.; Wang, P.; Chen, W.-Q.*; and Liu, G. Scenario analysis of China's aluminum cycle reveals the coming scrap age and the end of primary aluminum boom. Journal of Cleaner Production.2019, 226: 793-804.
  31. Li, X.-Y.; Ge, J.-P.*; Chen, W.-Q.*; and Wang, P. Scenarios of rare earth elements demand driven by automotive electrification in China: 2018–2030. Resources, Conservation and Recycling. 2019, 145: 322-331.
  32. Liu L., Yin Z.; Wang P.; Gan Y., Liao X. *. Water-carbon trade-off for inter-provincial electricity transmissions in China. Journal of Environmental Management, 2020, 268: 110719.
  33. Huang C; Xu M*; Cui S; Li Z; Fang H; Wang P.; Copper-induced ripple effects by the expanding electric vehicle fleet: A crisis or an opportunity. Resources, Conservation and Recycling, 161 (2020): 104861
  34. Wang, P.; Kara, S. Material criticality and circular economy: necessity of manufacturing-oriented strategies. Procedia CIRP 2019, 80: 667-672.
  35. Ryberg, M.; Wang, P.; Kara, S.; Hauschild, M. Prospective assessment of steel manufacturing relative to Planetary Boundaries: Calling for life cycle solution. Procedia CIRP2018, 69: 451-456.
  36. Wang, P.; Li, W.; Kara, S. Cradle-to-cradle modeling of the future steel flow in China. Resources, Conservation and Recycling2017, 117: 45-57.
  37. Wang P. Kara, S.*, & Hauschild, M. Z. The Role of Circular Economy, Consumption Reduction, and Material Efficiency in Peak Waste. Sardinia Symposium.2017 f
  38. Wang, P., Jiang, Z. *; Geng, X.-Y.; Hao, S.; Zhang X. Quantification of Chinese steel cycle flow: Historical status and future options.Resources, Conservation and Recycling 2014, 87:191-199.
  39. Wang P., Jiang Z., et al. Modelling and optimizing energy utilization of steel production process: a hybrid petri net approach. Advances in Mechanical Engineering. 2013,5: 1-11
  40. Wu Y., Jiang Z., Zhang X., Wang, P., et al. Numerical simulation of the direct reduction of pellets in a rotary hearth furnace for zinc-containing metallurgical dust treatment. International Journal of Minerals, Metallurgy, and Materials 20 (7), 2013: 636-644.